On the seasonal dependence of tropical lower-stratospheric temperature trends

نویسندگان

  • Q. Fu
  • S. Solomon
  • P. Lin
چکیده

This study examines the seasonality of tropical lower-stratospheric temperature trends using the Microwave Sounding Unit lower-stratospheric channel (T4) for 1980– 2008. We present evidence that this seasonality is largely a response to changes in the Brewer-Dobson circulation (BDC) driven by extratropical wave forcing. We show how the tropical T4 trend can be used as an indicator of changes in the BDC, and find that the BDC is strengthening for 1980– 2008 in June–November related to the Southern Hemisphere (SH) and in December–February to the Northern Hemisphere (NH). In marked contrast, we find that the BDC is weakening in March–May, apparently because of a weakening of its northern cell. The novel observational evidence on the seasonal dependence of the BDC trends presented in this study has important implications for the understanding of climate change in the stratosphere as well as testing climate model simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The signature of ozone depletion on tropical temperature trends, as revealed by their seasonal cycle in model integrations with single forcings

[1] The effect of ozone depletion on temperature trends in the tropical lower stratosphere is explored with an atmospheric general circulation model, and directly contrasted to the effect of increased greenhouse gases and warmer sea surface temperatures. Confirming and extending earlier studies we find that, over the second half of the 20th Century, the model’s lower-stratospheric cooling cause...

متن کامل

Seasonality in future tropical lower stratospheric temperature trends

The seasonality of the 21st century trends in tropical lower stratospheric temperature (LST) is examined in simulations by a group of comprehensive chemistry-climate models. In contrast to the past LST trends, there is robust seasonal dependence among ensembles of the same model. Furthermore, most models show strongest cooling around July–September and minimal cooling in February–March, which r...

متن کامل

The Impact of Ozone-Depleting Substances on Tropical Upwelling, as Revealed by the Absence of Lower-Stratospheric Cooling since the Late 1990s

The impact of ozone-depleting substances on global lower-stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower-stratospheric temperature trends has proven more challenging. While the tropical lower-stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active ...

متن کامل

Poleward Shift of Subtropical Jets Inferred from Satellite-Observed Lower-Stratospheric Temperatures

One pronounced feature in observed latitudinal dependence of lower-stratospheric temperature trends is the enhanced cooling near 308 latitude in both hemispheres. The observed phenomenon has not, to date, been explained in the literature. This study shows that the enhanced cooling is a direct response of the lower-stratospheric temperature to the poleward shift of subtropical jets. Furthermore,...

متن کامل

Effects of changes in well-mixed gases and ozone on stratospheric seasonal temperatures

[1] Monthly and seasonal stratospheric zonal-mean temperature trends arising from recent changes in stratospheric ozone and well-mixed greenhouse gases (WMGGs) are simulated using a general circulation model and compared with observed (1979–2000) trends. The combined effect of these gases yields statistically significant cooling trends over the entire globally averaged stratosphere in all month...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010